Math 210
Quiz # 1, October 12, 2013

1. (a) Define each of the following: limit point, open set, compact set,
bounded set.
(b) Prove that a closed subset of a compact set is compact.

(c) If E C K and K is compact, prove that £ C K.
2. State without proof the completeness property of R, the Archimedean
property of R, the Heine-Borel Theorem, and the Bolzano-Weierstrass Theorem
( for sequences).

3. (a) Use the completeness property of R to prove that every monotone
decreasing sequence which is bounded below is convergent.
(b) Let ¢, be the sequence defined by
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Prove that ¢, is a convergent sequence.
4. A sequence a,, is defined by
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Obtain the asymptotic behaviour of a,, and prove your answer.
5. Given that Z;O:I by, is a convergent series of positive terms. Suppose that
{ar} is a sequence satisfying the inequality

|ak+1 — ak| <ck, keN.

Prove that ay is a convergent sequence.
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6. Let > .~ ar be a series of positive terms, and use the notation
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Suppose that
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that o < 1, and take r such that o < r < 1.
(a) Prove that the series is convergent.

(b) Prove that there exists N > 0 such that
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